verified_user Pilih Kategori

Tampilkan postingan dengan label IPA. Tampilkan semua postingan
Tampilkan postingan dengan label IPA. Tampilkan semua postingan

Tenaga Eksogen dan Endogen

visibilityView Article
Permukaan bumi terbentuk karena adanya proses alamiah yang berlangsung terus-menerus. Peristiwa alamiah tersebut digerakkan oleh suatu tenaga alamiah yang berasal dari dalam maupun luar bumi. Tenaga-tenaga yang berasal dari dalam bumi dan bersifat membentuk permukaan bumi dikenal sebagai tenaga endogen. Adapun tenaga-tenaga yang berasal dari luar bumi dan bersifat mengubah atau merusak permukaan bumi disebut tenaga eksogen.

a. Tenaga Endogen
Tenaga endogen secara umum ada dua macam, yaitu tektonisme dan vulkanisme. Tektonisme merupakan gejala alam yang berupa peristiwa pergerakan lapisan kerak bumi yang menyebabkan perubahan pada permukaan bumi. Peristiwa alami karena tektonisme dapat berupa pelipatan, pergeseran, ataupun pengangkatan membentuk struktur permukaan bumi. Beberapa contoh bentuk alam yang disebabkan oleh gejala tektonisme antara lain adanya lembah, gunung, jurang, dan bukit.

Gejala alam yang berupa peristiwa keluarnya magma dari perut bumi ke permukaan dinamakan vulkanisme. Vulkanisme terjadi akibat tekanan gas di dapur magma yang temperaturnya tinggi, sehingga magma mendesak keluar. Aktivitas gunung berapi merupakan contoh peristiwa vulkanisme.

b. Tenaga Eksogen
Tenaga pengubah bentuk permukaan bumi yang berasal dari luar permukaan bumi dinamakan tenaga eksogen. Tenaga eksogen biasanya membentuk permukaan bumi dengan perusakan, misalnya melalui pelapukan, erosi, dan abrasi.

1) Pelapukan
Pelapukan merupakan proses alami hancurnya batuan tertentu menjadi berbagai jenis tanah. Berdasarkan penyebabnya, proses pelapukan dapat dibedakan menjadi tiga jenis, yaitu pelapukan kimia, fisika, dan biologi.
  • Pelapukan kimia adalah pelapukan yang terjadi karena reaksi kimia yang mengakibatkan hancurnya batuan. Peristiwa pelapukan kimia dapat terjadi karena batuan bereaksi dengan bahan kimia tertentu, misalnya batuan gamping yang melapuk karena terkena air.
  • Pelapukan fisika adalah proses hancurnya batuan karena proses fisika pada batuan tersebut. Pelapukan jenis ini biasanya tidak akan mengubah sifat dasar dan komposisi batuan yang mengalaminya. Pelapukan fisika biasanya terjadi karena temperatur di sekitar batuan selalu berubah-ubah secara cepat.
  • Pelapukan biologi adalah proses hancurnya batuan karena aktivitas makhluk hidup. Pelapukan biologi biasanya disertai oleh pelapukan kimia. Misalnya batu yang hancur karena ditumbuhi lumut, dan tanaman lain, atau batu yang berlubang karena dilubangi semut.

2) Erosi
Erosi didefinisikan sebagai proses terjadinya pengikisan pada bagian-bagian tertentu di muka bumi. Materi dari bagian yang mengalami pengikisan tersebut dapat mengalami perpindahan dari tempat asalnya. Proses perpindahan materi tersebut dinamakan transportasi. Berdasarkan penyebabnya, erosi dapat dibedakan menjadi lima jenis sebagai berikut.
  • Ablasi, yaitu erosi yang terjadi karena aliran air yang mengikis batuan atau permukaan bumi. Saat terjadi hujan di gunung, batuan dan tanah yang ada di permukaan gunung terkikis oleh air hujan yang mengalir dari puncak ke kaki gunung.
  • Deflasi terjadi karena adanya hembusan angin yang mengikis permukaan bumi. Contohnya, angin laut yang berhembus dari laut ke daratan dapat mengikis batuan dan pasir yang ada di daerah pantai.
  • Korosi terjadi karena hembusan angin yang membawa butiran pasir. Angin yang meniupkan butiran pasir menerpa bagian batuan tertentu sehingga batuan tersebut melapuk dan terkikis.
  • Abrasi terjadi di pantai karena gelombang air laut mengikis tepian pantai. Contohnya, pasir pantai dan karang yang tergerus oleh gelombang laut yang surut.
  • Eksarasi merupakan erosi yang terjadi karena gerakan es yang mencair atau gletser. Air dari es yang mencair di puncak gunung salju mengikis permukaan gunung di sepanjang jalur yang dilalui.

3) Sedimentasi
Sedimentasi merupakan proses pengendapan material hasil erosi pada tempat tertentu. Semua yang mengendap kemudian akan menyatu dan membentuk batuan baru yang disebut batuan sedimen. Berdasarkan penyebabnya, sedimentasi dapat dibedakan menjadi tiga jenis, yaitu sebagai berikut.
  • Sedimentasi akuatis atau sedimentasi karena air sungai, yaitu proses pengendapan materi-materi yang terbawa oleh aliran air di tempat-tempat yang dilaluinya. Hasil pembentukan dari proses sedimentasi fluvial adalah delta dan bantaran sungai. Delta berupa daratan di dekat pantai yang terbentuk karena pengendapan lumpur, tanah, pasir dan batuan yang terbawa oleh air sungai. Adapun bantaran sungai merupakan daratan semacam delta yang terbentuk di tepi sungai.
  • Sedimentasi aeolis atau sedimentasi karena angin, yaitu proses pengendapan materi-materi yang terbawa oleh hembusan angin di tempat-tempat yang dilalui oleh tiupan angin tersebut. Hasil pembentukan dari proses sedimentasi aeolis antara lain adalah gumuk pasir (sand dunes).
  • Sedimentasi marine atau sedimentasi karena air laut, yaitu proses pengendapan material yang terbawa oleh gelombang air laut. Hasil pembentukan dari proses sedimentasi marine antara lain tumpukan karang di pantai, bar (endapan pasir yang panjang seperti pematang) di pantai, tombolo (bar yang terbentuk dekat pantai dan terhubung dengan daratan), serta karang atol (karang yang bentuknya terputus-putus).

Kenampakan-kenampakan alam yang terbentuk akibat adanya proses sedimentasi oleh tenaga air antara lain delta, nehrung, tombolo, dataran banjir.
  • Delta adalah endapan tanah yang terdapat di muara sungai. Bentuk-bentuk delta antara lain delta kipas, delta runcing, dan delta kaki burung atau lobben
  • Nehrung adalah endapan pasir tepi pantai yang melintang seperti lidah banyak dijumpai di sekitar teluk atau estuaria.
  • Tombolo adalah endapan pasir yang menghubungkan daratan dengan pulau yang berada di dekat pantai.
  • Dataran banjir adalah dataran yang berada di kanan kiri sungai dan terbentuk akibat luapan saat terjadi banjir.

c. Pengaruh Tenaga Endogen dan Eksogen
Dampak positif tenaga endogen antara lain sebagai berikut.
  • Pembentukan patahan dan lipatan menyebabkan adanya keanekaragaman bentuk permukaan bumi seperti adanya danau, pegunungan, sungai dan dataran. Hasil bentukan ini dapat kita nikmati sebagai suatu keindahan alam dan juga memberi manfaat besar bagi manusia.
  • Proses vulkanisme dapat menyuburkan tanah, misalnya letusan gunung berapi yang menghamburkan debu vulkanik.
  • Pembentukan batuan memberikan manfaat yang besar bagi kehidupan manusia, misalnya granit dan fosfat yang menjadi bahan-bahan dasar industri.
  • Pembentukan logam-logam di perut bumi yang bermanfaat, semacam besi, baja, timah.

Dampak positif tenaga eksogen, antara lain sebagai berikut.
  • Di daerah pesisir, tenaga eksogen menghasilkan delta-delta di muara sungai yang subur sangat bermanfaat bagi manusia.
  • Hasil erosi dan sedimentasi di pesisir sangat baik untuk pertanian dan perikanan.
Sedangkan dampak negatif akibat tenaga endogen dan eksogen antara lain sebagai berikut.
  • Gunung yang meletus akan mengeluarkan lava, awan panas, dan material vulkanis yang dapat merusak lingkungan yang terkena seperti hutan, lahan pertanian, dan permukiman penduduk.
  • Gempa tektonik mengakibatkan rusaknya bangunan, retaknya tanah memutus jalan, listrik dan sarana-sarana lainnya, serta korban jiwa yang banyak.
  • Gas beracun yang keluar dari letusan gunung berapi dapat mengancam penduduk di sekitarnya.
  • Keadaan relief Indonesia yang kasar dan banyak memiliki gunung mengakibatkan banyak kejadian erosi dan tanah longsor.
  • Sedimentasi di muara sungai menyebabkan pendangkalan. Akibatnya lalu lintas air terhambat dan mengakibatkan banjir.
  • Abrasi yang terus-menerus terjadi mengakibatkan garis pantai makin maju ke arah daratan, sehingga banyak rumah di pantai yang hancur dan terendam laut.
  • Longsor tanah atau lahan di daerah berlereng yang mengakibatkan kerusakan lahan dan bangunan.
  • Angin kencang dan angin puting beliung mengakibatkan kerusakan tanaman dan bangunan.

Batuan Pembentuk Permukaan Bumi

visibilityView Article
Bumi tersusun dari tiga lapisan, yaitu kulit bumi, mantel bumi, dan inti bumi. Manusia hidup di permukaan bumi menempati lapisan terluar (kulit bumi) yang sering juga disebut kerak bumi atau litosfer. Istilah litosfer berasal dari bahasa Yunani yaitu lithos yang artinya batuan dan sphera yang artinya lapisan. Jadi litosfer adalah lapisan bumi paling luar dan terdiri atas batuan. Dalam pengertian lebih luas, litosfer dapat berarti seluruh lapisan bumi dari lapisan kerak bumi (crust) sampai ke bagian inti bumi yang cair (molten core), tetapi tidak termasuk hidrosfer dan atmosfer.

Kerak bumi terdiri atas kerak daratan dan kerak lautan dan tersusun dari bermacam-macam batuan dengan ketebalan yang berbeda-beda. Kerak daratan adalah kerak bumi pada bagian daratan (permukaan bumi di daratan), sedangkan kerak lautan adalah kerak bumi yang menempati dasar laut (permukaan bumi di dasar laut). Kerak daratan lebih tebal jika dibanding dengan kerak lautan.

Secara garis besar batuan di permukaan bumi dapat dibedakan menjadi tiga berdasarkan proses pembentukannya, yaitu batuan beku, batuan sedimen, dan batuan malihan.

a. Batuan Beku
  • Batuan beku dalam, yaitu merupakan hasil pembekuan magma di bagian dalam perut

    bumi, bahkan di dalam dapur magma. Karena proses pendinginan yang terjadi berlangsung sangat lambat, maka dihasilkan hablur mineral yang sempurna (teratur). Contoh batuan beku dalam antara lain sienit, granit, diorit, dan gabro.
  • Batuan beku luar, yaitu terbentuk karena adanya proses pembekuan magma pada permukaan bumi. Biasanya proses pembentukan batuan ini terjadi secara cepat akibat penurunan suhu yang mendadak. Contoh batuan beku dalam antara lain obsidian, liparit, trachit, desit, andesit, dan basalt.
  • Batuan beku korok, yaitu terbentuk karena proses penyusupan magma pada celah-celah litosfer bagian atas dan kemudian membeku. Oleh karenanya, posisi batuan beku korok biasanya dekat dengan permukaan bumi. Batuan beku jenis ini juga mengkristal. Beberapa contoh batuan beku korok antara lain porfir granit, porfir diorit, dan ordinit.

Di alam, kita dapat membedakan empat macam batuan beku berdasarkan teksturnya, yaitu sebagai berikut.
  • Batuan granitoid, yaitu semua batuan yang butir-butir mineralnya cukup besar untuk dapat dikenal dengan mata biasa (megaskopis).
  • Batuan felsitoid, (aphanit) yaitu batuan yang tersusun terutama atau seluruhnya atas butir-butir mineral kecil yang hanya dapat dikenal jika dilihat dengan bantuan lensa kuat (mikroskopis).
  • Batuan gelas, yaitu batuan yang tersusun seluruhnya atau sebagian besar atas bahan gelas yang berkilap kaca.
  • Batuan pecahan (fragment), yaitu batuan yang tersusun terutama atas bahan yang dikeluarkan vulkan.
b. Batuan Sedimen
Batuan sedimen terbentuk dari batuan beku atau zat padat yang mengalami erosi di tempat tertentu kemudian mengendap dan menjadi keras. Batuan sedimen biasanya berlapis-lapis secara mendatar. Di antara batuan ini, seringkali ditemukan fosil-fosil. Batuan sedimen dapat dibagi berdasarkan proses pembentukannya, yaitu sedimen klastis, kimiawi, dan organik.

  • Batuan sedimen klastis terbentuk karena pelapukan atau erosi pada pecahan batuan atau mineral, sehingga batuan menjadi hancur atau pecah dan kemudian mengendap di tempat tertentu dan menjadi keras. Susunan kimia dan warna batuan ini biasanya sama dengan batuan asalnya. Contoh batuan sedimen klastis antara lain batu konglomerat, batu breksi, dan batu pasir.
  • Batuan sedimen kimiawi terbentuk karena pengendapan melalui proses kimia pada mineral-mineral tertentu. Misalnya, pada batu kapur yang larut oleh air kemudian mengendap dan membentuk stalaktit dan stalagmit di gua kapur. Contoh batuan sedimen kimiawi lainnya adalah garam.
  • Batuan sedimen organik atau batuan sedimen biogenik terbentuk karena adanya sisa-sisa makhluk hidup yang mengalami pengendapan di tempat tertentu. Contohnya, batu karang yang terbentuk dari terumbu karang yang mati dan fosfat yang terbentuk dari kotoran kelelawar

c. Batuan Malihan (Metamorfosis)
Batuan malihan terbentuk dari batuan beku atau batuan sedimen yang telah berubah wujud. Karena itu, batuan malihan disebut juga batuan metamorfosis. Batuan malihan dapat dibagi berdasarkan proses pembentukannya, yaitu sebagai berikut.
  • Batuan malihan kontak, yaitu terbentuk karena adanya pemanasan atau peningkatan suhu dan perubahan kimia karena intrusi magma. Contohnya, batu marmer yang berasal dari batu kapur.
  • Batuan malihan dinamo, yaitu terbentuk karena adanya tekanan yang besar disertai pemanasan dan tumbukan. Tekanan dapat berasal dari lapisan-lapisan yang berada di atas batu dalam jangka waktu lama. Contohnya batu sabak yang berasal dari tanah liat. Contoh lainnya batubara yang berasal dari sisa-sisa jasad hewan dan tumbuhan di daerah rawa-rawa (tanah gambut).
  • Batuan malihan thermal-pneumatolik, yaitu terbentuk karena adanya zat-zat tertentu yang memasuki batuan yang sedang mengalami metamorfosis. Contohnya, batu zamrud, permata, dan topaz.

Gaya Gerak Listrik Induksi

visibilityView Article
Galvanometer merupakan alat yang dapat digunakan untuk mengetahui ada tidaknya arus listrik yang mengalir. Ketika sebuah magnet yang digerakkan masuk dan keluar pada kumparan. Bergeraknya jarum galvanometer menunjukkan bahwa magnet yang digerakkan keluar dan masuk pada kumparan menimbulkan arus listrik. Jarum galvanometer menyimpang karena adanya arus listrik yang mengalir dalam kumparan. Arus listrik ini mengalir karena timbulnya beda potensial di ujung kumparan saat kita menggerakkan kutub magnet batang masuk atau keluar dari kumparan. Beda potensial yang disebabkan oleh perubahan jumlah garis gaya magnetik yang menembus kumparan dinamakan gaya gerak listrik induksi atau ggl induksi.

Ggl induksi timbul ketika magnet batang digerakkan masuk atau keluar kumparan. Jika magnet batang terus-menerus digerakkan masuk dan keluar kumparan, jumlah garis gaya magnetik yang menembus kumparan terus berubah. Perubahan jumlah garis gaya magnetik yang menembus kumparan menyebabkan beda potensial di ujung-ujung kumparan berbeda pula. Timbulnya beda potensial di ujung-ujung kumparan menyebabkan arus listrik mengalir di dalam kumparan. Arus listrik yang disebabkan oleh perubahan jumlah garis gaya magnetik yang memotong kumparan dinamakan arus induksi.

Besarnya gaya gerak listrik atau tegangan yang menimbulkan arus listrik pada percobaan Faraday sebanding dengan laju perubahan fluks magnetik yang melalui kumparan. Kesimpulan tersebut jika dituliskan secara matematis adalah sebagai berikut.
Ei = - N .ΔΦ ............(8.1)
Δt
Keterangan:
N = jumlah lilitan
ΔΦ = fluks magnetik (Weber atau Wb)
Δt = perubahan waktu/selang waktu (sekon)
Ei = ggl induksi (volt)
Tanda negatif menunjukkan arah gaya gerak listrik (ggl)

Contoh
Sebuah kumparan dengan 3.000 lilitan, terjadi perubahan fluks magnetik 1.500 Wb selama selang waktu 2 sekon. Hitunglah besar ggl induksinya!
Jawab:
N = 3.000
ΔΦ = 1.500 Wb
Δt = 2 sekon
Ei = .... ?
Ei = - N . ΔΦ
Δt
Ei = - 3.000 . 1.500
2
= -2,25 . 106
Jadi di dalam kumparan tersebut timbul ggl induksi sebesar 2,25 × 106 volt (tanda – menunjukkan arah ggl).

Jika jumlah lilitan dalam kumparan diperbanyak, jarum galvanometer akan menyimpang lebih jauh. Hal ini menunjukkan bahwa arus listrik induksi yang mengalir melalui kumparan meningkat dan ggl induksi bertambah besar. Selain dengan memperbanyak jumlah lilitan, ggl induksi dapat bertambah lebih besar jika kecepatan magnet yang memasuki kumparan dipercepat. Jadi, besar kecilnya ggl induksi bergantung pada tiga faktor berikut.
1. Banyaknya lilitan kumparan.
2. Kecepatan gerak keluar-masuk magnet ke dalam kumparan.
3. Kuat magnet batang yang digunakan.

Arus listrik dalam kumparan mengalir dalam dua arah, arus listrik seperti ini dinamakan arus listrik bolak-balik atau arus AC (Alternating Current). Sama halnya seperti arus listrik yang berubah-ubah, polaritas tegangan pada ujung-ujung kumparan pun ikut berubah-ubah. Tegangan yang polaritasnya selalu berubah-ubah dinamakan tegangan listrik bolak-balik.

Generator
Generator adalah mesin yang mengubah energi kinetik atau energi gerak menjadi energi
listrik. Generator menghasilkan arus listrik induksi dengan cara memutar kumparan di antara celah kutub utara-selatan sebuah magnet. Ada dua jenis generator, yaitu generator arus bolak-balik yang disebut juga alternator dan generator arus searah. Perbedaan generator arus bolak-balik dengan generator arus searah hanyalah pada bentuk cincin yang berhubungan dengan kedua ujung kumparan. Pada generator arus bolak-balik (A) terdapat dua buah cincin, dengan tiap cincin berhubungan dengan tiap ujung kumparan. Pada generator arus searah (B) hanya terdapat sebuah cincin yang terbelah di tengahnya yang dinamakan cincin belah atau komutator.


1. Generator Arus Bolak-Balik
Ujung-ujung kumparan yang berada di dalam medan magnetik terhubung pada cincin 1 dan cincin 2 yang ikut berputar jika kumparan diputar. Cincin-cincin tersebut terhubung dengan sikat karbon A dan B. Kedua sikat karbon ini tidak ikut berputar bersama cincin dan kumparan. Ketika kumparan berputar, terjadi arus listrik induksi pada kumparan. Arus induksi ini mengalir melalui sikat karbon sehingga lampu menyala. Saat posisi kumparan tegak lurus terhadap arah medan magnetik, arus induksi berhenti mengalir sehingga lampu padam. Beberapa saat setelah kumparan melanjutkan putarannya, arus listrik induksi kembali mengalir dalam kumparan tetapi dengan arah yang berbeda sehingga lampu kembali menyala.

2. Generator Arus Searah
Generator arus searah hanya memiliki satu cincin yang terbelah di tengahnya yang dinamakan komutator. Salah satu belahan komutator selalu berpolaritas positif dan belahan komutator lainnya berpolaritas negatif. Hal ini menyebabkan arus listrik induksi yang mengalir hanya memiliki satu arah saja, yaitu dari komutator berpolaritas positif menuju sikat karbon, lampu, dan kembali ke komutator berpolaritas negatif. Arus listrik yang mengalir dalam satu arah saja dinamakan arus listrik searah atau direct current (DC).

Generator terdapat dua bagian. Bagian yang pertama dinamakan rotor, yaitu bagian-bagian generator yang bergerak, seperti kumparan dan cincin konduktor. Bagian yang kedua dinamakan stator, yaitu bagian-bagian generator yang tidak bergerak, seperti magnet dan sikat. Contoh generator sederhana adalah dinamo sepeda. Dinamo sepeda mengandung kumparan kawat yang berputar di antara dua magnet. Ketika berputar, roda sepeda akan memutar kumparan di antara dua magnet tetap.

Transformator
Transformator terdiri atas pasangan kumparan primer dan sekunder yang terpisah dan dililitkan pada inti besi lunak yang terbuat dari plat besi yang disusun berlapis-lapis. Transformator biasanya digunakan untuk menaikkan atau menurunkan tegangan listrik arus AC. Hal ini dapat dilakukan dengan cara membedakan jumlah lilitan dari kumparan primer dan kumparan sekunder. Pada transformator, perbandingan tegangan sama dengan perbandingan banyaknya lilitan. Secara matematis hubungan antara tegangan dan banyaknya lilitan dituliskan sebagai berikut.
Vp= Np .............(8.2)
VsNs
Keterangan:
Vp = tegangan pada kumparan primer
Vs = tegangan pada kumparan sekunder
Np = banyaknya lilitan kumparan primer
Ns = banyaknya lilitan kumparan sekunder

Dari Persamaan (8.2) dapat dikatakan bahwa besarnya tegangan berbanding lurus dengan banyaknya lilitan. Jika besarnya tegangan dan kuat arus listrik pada kumparan primer dinyatakan dengan Vp dan Ip, maka besar daya listrik pada kumparan primer (Pp) adalah sebagai berikut,
Pp = Vp ⋅ Ip ......... (8.3)
Jika besarnya tegangan dan kuat arus listrik pada kumparan sekunder dinyatakan dengan Vs dan Is, maka besar daya listrik pada kumparan sekunder (Ps) adalah sebagai berikut.
Ps = Vs ⋅ Is ......... (8.4)

Berdasarkan tegangan listrik yang dihasilkan, trafo dibedakan menjadi dua macam, yaitu trafo step up dan trafo step down. Trafo step up adalah trafo yang menghasilkan tegangan arus AC lebih tinggi. Ciri-ciri trafo step up adalah sebagai berikut.
a. Np < Ns
b. Vp < Vs
c. Ip > Is
Trafo step down adalah trafo yang menghasilkan tegangan arus AC lebih rendah. Ciri-ciri trafo step down adalah sebagai berikut.
a. Np > Ns
b. Vp > Vs
c. Ip < Is

Pada transformator ideal, efisiensi transformator dapat dianggap 100%, hal ini berarti daya yang hilang dalam transformator dapat diabaikan sehingga daya listrik pada kumparan primer dapat diteruskan seluruhnya menuju kumparan sekunder. Dengan pengertian tersebut dapat diperoleh:

Pp = Ps ⇔ Vp ⋅ Ip = Vs ⋅ Is ......... (8.5)

Sehingga hubungan antara besarnya tegangan dan besarnya arus listrik dapat dituliskan sebagai berikut.
Vp= Is .............(8.6)
VsIp

Perbandingan tegangan pada Persamaan (8.6) sama dengan perbandingan tegangan pada Persamaan (8.2) sehingga hubungan antara arus listrik dengan banyaknya lilitan dapat diperoleh sebagai berikut.
Np= Is .............(8.7)
NsIp

Contoh
Sebuah radio memerlukan tegangan 9 volt dari catu daya 220 volt.
a. Jika kumparan primer trafo memiliki 440 lilitan, berapakah jumlah lilitan yang dimiliki kumparan sekunder?
b. Jika arus 110 mA mengalir melalui radio, berapakah arus yang ditarik dari catu daya 220 volt?

Jawab:
a. Dengan menggunakan Persamaan (8.2) diperoleh:
Vp= Np 220V= 440
VsNs9VNs
Vp=n Ns= 9Vx 440
Vs nn 220V
= 18
Jadi jumlah lilitan kumparan sekunder adalah 18 lilitan.
b. Dengan menggunakan Persamaan (8.6) diperoleh:
Vp= Ip 220V= 110mA
VsIs9VIp

=
Ip= 9Vx 110mA


220V
= 4,5mA

Jadi arus yang mengalir pada kumparan primer adalah 4,5 mA.

Perbandingan antara daya listrik yang keluar dari transformator dan daya listrik yang masuk ke transformator disebutefisiensi transformator. Nilai efisiensi transformator dinyatakan dalam persentase. Efisiensi transformator dapat dinyatakan sebagai berikut.
η = Vs . Isx 100%..........(8.9)
Vp .Ip
Keterangan:
η = efisiensi transformator
Vs = tegangan sekunder (volt)
Vp = tegangan primer (volt)
Is = arus pada kumparan sekunder (ampere)
Ip = arus pada kumparan primer (ampere)
Contoh

Sebuah transformator menghasilkan daya sebesar 180 watt. Berapakah efisiensi transformator tersebut jika daya masukannya sebesar 200 watt?
Jawab:

Dengan menggunakan Persamaan (8.8) diperoleh:
η = Ps x 100 %
Pp
η =180 x 100 = 90%
200
Jadi efisiensi transformator tersebut adalah 90%.

Gejala Kemagnetan

visibilityView Article
Pada beberapa abad yang lalu, kira-kira 600 SM, bangsa Yunani telah menemukan batuan di daerah Magnesia yang dapat menarik potongan besi dan baja. Batu inilah yang saat ini dikenal dengan nama magnet. Kemagnetan dapat diartikan sebagai tarikan sebuah magnet pada bahan-bahan magnetik. Benda magnetik adalah benda yang dapat ditarik oleh magnet, seperti peniti, penjepit kertas, jarum, dan paku payung. Benda magnetik biasanya terbuat dari besi, baja, kobalt, dan nikel. Benda-benda yang tidak dapat ditarik magnet dinamakan benda nonmagnetik atau benda bukan magnetik seperti penghapus, sendok, kertas, pensil, pulpen, dan penggaris. Benda nonmagnetik biasanya terbuat dari tembaga, aluminium, plastik, karet, dan kayu.

Berdasarkan kemampuan menyimpan sifat magnetiknya, bahan magnetik dapat digolongkan menjadi magnet permanen dan magnet sementara. Magnet permanen merupakan magnet yang tetap mempertahankan kekuatannya untuk jangka waktu yang lama. Magnet permanen digunakan dalam berbagai alat pengukur, antara lain voltmeter, galvanometer, alat perekam kardiograf, kompas magnet, magnetometer. Magnet permanen juga digunakan dalam peralatan seperti pengeras suara (loudspeaker), pita kaset, dan disket.

Magnet terdiri atas beberapa jenis. Berdasarkan bentuknya, magnet dibedakan atas magnet batang, magnet silinder, magnet U, magnet ladam, dan magnet jarum. Magnet mempunyai dua buah kutub yang disebut kutub magnet. Kutub-kutub ini dinamakan kutub utara (berwarna merah) dan kutub selatan (berwarna hitam).

Ujung-ujung magnet selalu mengarah ke utara dan selatan bumi. Ujung magnet yang
magnet
mengarah ke utara bumi dinamakan kutub utara magnet, sedangkan ujung magnet yang mengarah ke selatan Bumi dinamakan kutub selatan magnet. Bumi memiliki sifat magnetik, sehingga Bumi dapat dianggap sebagai magnet raksasa. Hal inilah yang menyebabkan jarum kompas selalu menunjuk arah yang sama walaupun setelah diberikan gangguan, yaitu arah utara-selatan.

Kutub utara dari magnet bumi terdapat di dekat kutub selatan bumi dan kutub selatan magnet bumi terdapat di dekat kutub utara bumi. Kutub-kutub magnet bumi tidak tepat berhimpit dengan kutub-kutub bumi. Hal tersebut menyebabkan jarum kompas tidak tepat menunjuk arah utara-selatan bumi, tetapi sedikit menyimpang. Sudut penyimpangan ini dinamakan sudut deklinasi.

Jika kita memerhatikan jarum kompas, jarum kompas tidak pernah terletak mendatar atau tidak pernah sejajar dengan bidang horizontal. Jarum kompas tidak pernah sejajar bidang horizontal karena garis-garis gaya magnetik Bumi tidak sejajar dengan permukaan Bumi, tetapi membentuk kemiringan terhadap arah horizontal. Sudut yang dibentuk oleh jarum kompas terhadap bidang horizontal ini disebut sudut inklinasi. Sudut inklinasi positif bila kutub utara jarum kompas menyimpang ke bawah terhadap arah horizontal, sedangkan inklinasi negatif sebaliknya.

Membuat Magnet
1. Membuat Magnet dengan Menggosok
Batang besi atau baja yang telah digosok selama beberapa menit dengan magnet batang akan menjadi magnet. Kutub magnet yang dihasilkan di ujung batang besi atau baja yang digosok selalu berlawanan dengan kutub magnet yang menggosoknya.

2. Membuat Magnet dengan Mengalirkan Arus Listrik
Paku dapat dibuat menjadi magnet dengan cara diberi arus listrik melalui kawat yang dililitkan pada paku. Magnet yang dibuat dengan menggunakan arus listrik dinamakan dengan elektromagnet.

3. Membuat Magnet dengan Cara Induksi
Paku dapat dibuat menjadi magnet dengan cara didekatkan pada sebuah magnet kuat. Cara membuat magnet dengan cara mendekatkan batang baja atau besi pada sebuah magnet kuat dinamakan induksi magnetik.

Jika sebuah magnet batang dipotong menjadi beberapa bagian, maka bagian-bagian tersebut merupakan magnet baru dan masing-masing bagian mempunyai kutub utara dan kutub selatan. Jika magnet batang tersebut dipotong-potong terus-menerus menjadi bagian yang labih kecil, akan didapat bagian terkecil yang disebut magnet elementer. Teori magnet elementer dikemukakan oleh Weber, yang intinya adalah sebagai berikut.
  • Sebuah magnet dapat dibagi-bagi menjadi magnet yang lebih kecil dalam cacah tak terhingga. Magnet kecil ini dinamakan magnet elementer.
  • Benda/zat, terutama besi dan baja, terdiri atas magnet elementer-magnet elementer.
  • Pada benda yang bersifat magnet, susunan magnet elementernya teratur dan membentuk arah yang sama. Sedangkan pada benda yang tidak bersifat magnet, susunan magnet elementernya tidak teratur.
  • Magnet elementer pada besi mudah bergerak, sedangkanmagnet elementer pada baja sukar bergerak. Karena itulah, magnet yang terbuat dari besi bersifat sementara, sedangkan magnet yang terbuat dari baja bersifat tetap.

Medan Magnet
Medan magnet adalah daerah di sekitar magnet yang menyebabkan sebuah muatan yang bergerak di sekitarnya mengalami suatu gaya. Medan magnet tidak dapat dilihat, namun dapat dijelaskan dengan mengamati pengaruh magnet pada benda lain, misalnya pada serbuk besi.
  • Garis-garis gaya magnetik selalu keluar dari kutub utara magnet dan masuk ke kutub selatan magnet.
  • Garis-garis gaya magnetik tidak pernah saling berpotongan dengan garis-garis gaya magnetik lain yang berasal dari magnet yang sama.
  • Daerah yang garis-garis gaya magnetiknya rapat menunjukkan medan magnetik yang kuat, sedangkan daerah yang garis-garis gaya magnetiknya kurang rapat menunjukkan medan magnetik yang lemah.

Arah medan magnetik dari sebuah kawat yang dialiri arus listrik dapat ditentukan dengan menggunakan kaidah tangan kanan Oersted. Arah arus listrik ditunjukkan dengan ibu jari dan garis gaya magnetik ditunjukkan dengan keempat jari tangan. Medan magnetik yang dihasilkan oleh sebuah kawat penghantar sangatlah lemah, untuk menghasilkan medan magnetik yang cukup kuat dapat digunakan kumparan berarus listrik. Kumparan bersifat sebagai magnet yang kuat ini disebut sebagai elektromagnet. Elektromagnet memiliki sifat kemagnetan sementara. Jika arus listrik diputuskan, sifat kemagnetannya segera hilang.

Kumparan berarus listrik dapat menghasilkan medan magnetik yang kuat karena setiap
lilitan pada kumparan menghasilkan medan magnetik yang akan diperkuat oleh lilitan lainnya. Semakin banyak lilitan suatu kumparan, medan magnetik yang dihasilkannya semakin besar. Pola garis gaya magnetik yang dihasilkan oleh kumparan yang .dialiri arus listrik.

Untuk menentukan kutub magnet pada kumparan berarus listrik, digunakan aturan genggaman tangan kanan. Kutub utara ditunjukkan oleh arah ibu jari, arah arus pada kumparan sama dengan arah genggaman keempat jari.

Gaya Lorentz
Gaya Lorentz adalah gaya yang dialami sebuah penghantar yang dialiri arus listrik dalam
suatu medan magnetik yang sangat kuat. Arah gaya Lorentz (F) selalu tegak lurus terhadap kuat arus (I) dan medan magnetik (B). Arah arus listrik (I) ditunjukkan oleh ibu jari, arah medan magnetik (B) ditunjukkan oleh jari telunjuk, dan gaya lorentz ditunjukkan oleh jari tengah. Besar gaya lorentz bergantung pada besar medan magnetik, besar arus listrik yang mengalir, panjang kawat penghantar, dan sudut yang terbentuk antara arus listrik dan medan magnetik. Secara matematis gaya Lorentz didefinisikan dengan persamaan sebagai berikut.
F = B × I × l × sin θ ......... (7.1)
Keterangan:
F = gaya Lorentz (Newton)
B = medan magnetik (tesla)
I = kuat arus listrik (ampere)
l = panjang kawat penghantar (meter)
θ = sudut antara arah arus listrik dan arah medan magnetik

Pemanfaatan Sifat Kemagnetan
1. Prinsip Elektromagnet dalam Bel Listrik
Bel listrik terdiri atas beberapa bagian, yaitu sebagai berikut.
  • Besi berbentuk huruf U yang dililit kawat berfungsi sebagai magnet ketika diberi arus listrik.
  • Interuptor yang berfungsi sebagai pemutus arus.
  • Jangkar besi lunak yang dihubungkan dengan pegas baja.
  • Besi yang berfungsi sebagai bel.
  • Saklar tekan.
  • Baterai sebagai sumber tegangan.
Ketika saklar ditekan, arus listrik dari baterai mengalir melalui interuptor lalu menuju pegas baja dan akhirnya sampai di kumparan. Ketika kumparan dialiri arus listrik, kumparan tersebut menjadi magnet (elektromagnet) dan menarik jangkar besi lunak sehingga jangkar tersebut memukul bel dan menghasilkan bunyi. Sesaat setelah jangkar besi lunak ditarik oleh elektromagnet, arus listrik yang mengalir melalui interuptor terputus. Terhentinya arus listrik yang mengalir menuju kumparan menyebabkan kumparan kehilangan sifat kemagnetannya sehingga pegas baja menarik jangkar besi lunak pada keadaan semula. Setelah kembali ke kedudukan semula, interuptor terhubung kembali dengan arus listrik dari baterai sehingga kumparan menjadi magnet dan proses yang sama akan terulang kembali. Proses ini terjadi secara berulang-ulang sehingga bel terus menghasilkan bunyi sampai saklar kembali ditekan untuk memutuskan arus dari baterai.

2. Prinsip Elektromagnet dalam Relai
Relai adalah alat elektronika yang dapat menghubungkan atau memutuskan arus listrik yang
besar dengan memanfaatkan arus listrik yang kecil. Relai merupakan saklar yang bekerja dengan menggunakan prinsip elektromagnet.

Ketika ada arus lemah yang mengalir melalui kumparan, inti besi lunak akan menjadi magnet. Setelah menjadi magnet, inti besi tersebut menarik jangkar besi lunak sehingga kontak saklar akan terhubung dan arus listrik kuat dapat mengalir. Kontak saklar akan terputus jika arus lemah yang masuk melalui kumparan diputuskan.

Pada relai terdapat dua buah rangkaian yang terpisah. Rangkaian pertama adalah rangkaian yang menghubungkan arus lemah dengan elektromagnet pada relai. Rangkaian kedua adalah rangkaian yang memanfaatkan kontak saklar pada relai untuk memutuskan atau menghubungkan arus listrik kuat yang terhubung dengan alat listrik lainnya, seperti motor listrik atau lampu

3. Prinsip Elektromagnet dalam Telepon
Telepon terdiri atas dua bagian utama, yaitu pesawat pengirim dan pesawat penerima. Telepon bekerja dengan cara mengubah gelombang suara menjadi getaran-getaran listrik. Ketika kita berbicara pada pesawat pengirim melalui mikrofon, tekanan suara kita menekan diafragma aluminium sehingga serbuk-serbuk karbon tertekan. Akibatnya, hambatan serbuk karbon berubah-ubah sesuai dengan tekanan suaramu.

Perubahan hambatan ini menyebabkan besarnya arus yang mengalir melalui rangkaian ikut berubah mengikuti perubahan tekanan suara. Perubahan besar arus yang mengalir tersebut diubah menjadi sinyal yang akan dikirimkan ke pesawat penerima. Pada pesawat penerima, sinyal listrik diubah kembali menjadi tekanan-tekanan suara. Akibatnya, diafragma besi yang ada dalam pesawat penerima terdorong dan menghasilkan tekanan suara yang sama dengan tekanan suara yang dikirimkan mikrofon.

Hubungan Tegangan, Kuat Arus, dan Energi Listrik

visibilityView Article
Energi listrik dapat berubah menjadi bentuk energi lain. Untuk mengubah energi listrik menjadi energi lain diperlukan alat listrik. Setrika merupakan alat listrik yang memiliki hambatan, jika digunakan memerlukan tegangan, arus listrik, dan waktu penggunaan. Hambatan, tegangan, kuat arus, dan waktu itulah yang memengaruhi besar energi listrik. Energi listrik sebanding dengan tegangan listrik (V), kuat arus listrik (I), dan waktu (t). Secara matematis pernyataan tersebut dapat dinyatakan sebagai berikut.
W = V · I · t (6.1)
Karena menurut Hukum Ohm I=V/R atau V=I.R, maka persamaan tersebut dapat diturunkan menjadi persamaan berikut.
W=V. I. t =V.( V ) .t = V2 . t .............(6.2)
R R
Atau
W = V · I · t = (I · R) · I · t = I2 · R · t ......... (6.3)
Keterangan:
W = energi listrik (joule)
V = tegangan listrik (volt)
I = kuat arus listrik (ampere)
t = selang waktu (sekon)
R = hambatan listrik (ohm)

Contoh 1
Sebuah lampu 220 volt dialiri arus listrik sebesar 5 ampere. Tentukanlah energi listrik yang timbul setelah lampu tersebut dialiri arus listrik selama:
a. 10 sekon
b. 5 menit
Jawab:
V = 220 volt
I = 5 ampere
a. t = 10 sekon
W = V · I · t
= (220 volt) · (5 A) · (10 s)
= 11.000 joule
b. t = 5 menit = 5 · 60 sekon = 300 sekon
W = V · I · t
= (220 volt) · (5 A) · (300 s)
= 330.000 joule

Contoh 2
Sebuah setrika listrik 220 volt memiliki elemen pemanas 50 ohm. Berapa energi listrik yang dihasilkan setrika tersebut selama 5 menit?
Jawab:
V = 220 volt
R = 50 ohm
t = 5 · 60 s = 300 s
W = .... ?
Dengan menggunakan Persamaan (6.2) diperoleh:
W = V2/R . t
= 2202 . 300
    50
= 290.400 joule

Contoh 3
Energi listrik yang dihasilkan sebuah elemen listrik dengan hambatan 5 ohm dan dialiri arus listrik selama 2 menit adalah 9.600 J. Berapa kuat arus listrik yang mengalir melalui elemen listrik tersebut?
Jawab:
R = 5 ohm
W = 9.600 J
t = 2 · 60 s = 120 s
I = .... ?
Dengan menggunakan Persamaan (6.3) diperoleh:
W = I2 · R · t ⇔ 9.600 = I2 · 5 · 120
⇔ I 2 = 9.600/600 = 16 A
⇔ I =√16 = 4 Ampere

Daya Listrik
Watt merupakan satuan daya listrik. Daya listrik adalah banyaknya energi listrik yang terpakai setiap sekonnya. Satuan daya listrik adalah watt, 1 watt = 1 joule/sekon. Secara matematis, persamaan daya listrik dinyatakan sebagai berikut.
P = W/t (6.4)
Keterangan:
P = daya listrik (watt)
W = energi listrik (joule)
t = selisih waktu (sekon)

Satuan daya lainnya:
a. kilowatt (kW), 1 kW = 103 W
b. megawatt (MW), 1 MW = 106 W
Dari Persamaan (6.1) telah diketahui bahwa W = V · I · t , sehingga daya listrik dapat juga dituliskan sebagai berikut.
P=W/t =

Contoh 1
Sebuah radio 150 watt, 220 volt dihubungkan dengan sumber tegangan listrik 220 volt selama 1 menit. Berapa banyak energi listrik yang digunakan?
Jawab:
P = 150 watt
V = 220 volt
t = 1 menit = 1 . 60 s = 60 s
W = .... ?
Dengan menggunakan Persamaan (6.4) diperoleh:
P = W/ t ⇔ 150 = W/60
⇔ W = 150 . 60
= 9.000 J

Contoh 2
Sebuah sekring dipasang pada tegangan 220 volt menyebabkan arus mengalir sebesar 3 A. Berapa daya sekring tersebut?
Jawab:
V = 220 volt
I = 3 ampere
P = .... ?
Dengan menggunakan Persamaan (6.5) diperoleh:
P = V · I
= 220 · 3
= 660 watt

Contoh 3
Sebuah pemanas air mempunyai elemen pemanas dengan hambatan 100 ohm dialiri arus listrik sebesar 5 ampere. Berapakah daya listrik pemanas air tersebut?
Jawab:
R = 100 ohm
I = 5 ampere
P = .... ?
Dengan menggunakan Persamaan (6.6) diperoleh:
P = I2 × R
= 52 × 100
= 2.500 watt

Contoh 4
Sebuah lampu listrik bertuliskan 40 W, 220V. Apakah artinya?
Jawab:
Lampu bertuliskan 40 W, 220 V artinya lampu tersebut memerlukan daya 40 W atau energi 40 joule/sekon jika dipasang pada tegangan 220 volt.

Energi listrik yang digunakan di rumahmu disuplai oleh PLN. PLN menggunakan kWh meter untuk mengukur penggunaan energi listrik oleh konsumen dalam satuan kilowatt jam (kWh = kilowatt hour). Satu kWh adalah besarnya energi listrik yang digunakan selama 1 jam dengan daya listrik sebesar 1.000 watt.

Contoh
Dalam sebuah rumah terdapat 6 buah lampu 25 watt, 2 buah lampu 60 watt, sebuah radio 100 watt, dan sebuah televisi 150 watt yang dinyalakan selama 5 jam setiap harinya. Jika harga 1 kWh sebesar Rp 200,00, berapakah biaya pemakaian listrik selama 1 bulan (30 hari)?
Jawab:
Daya total alat-alat listrik adalah:
P = (6 × 25 W) + (2 × 60 W) + (1 × 100 W) + (1 × 150 W)
= 150 W + 120 W + 100 W + 150 W
= 520 W
Pemakaian selama 1 bulan = 5 jam × 30 hari = 150 jam.
Energi listrik selama 1 bulan adalah:
W = P × t
= 520 watt × 150 jam
= 78.000 watt jam (1 kWh = 1.000 watt jam)
= 78 kWh
Jadi, biaya listrik yang harus dibayar adalah 78 kWh × Rp 200,00 = Rp 15.600,00.

Listrik Statis

visibilityView Article
Listrik Statis. Pengetahuan tentang listrik dimulai dari teori atom, yaitu dengan ditemukannya atom dan teori-teori yang menjelaskan tentang perkiraan-perkiraan struktur atom. Thales Militus, seorang ilmuwan Yunani, menemukan gejala listrik yang diperoleh dengan menggosok batu ambar, yang dalam bahasa Yunani disebut elektron. Setelah digosok ternyata batu ambar tersebut dapat menarik benda-benda kecil yang berada di dekatnya. Sifat seperti ini dalam ilmu listrik disebut elektrifikasi. Listrik yang terjadi pada batu ambar yang digosok disebut listrik statis yaitu listrik yang tidak mengalir.

Suatu zat terdiri atas partikel-partikel kecil yang disebut atom. Atom berasal dari kata atomos, yang artinya tidak dapat dibagi-bagi lagi. Tetapi, dalam perkembangannya ternyata atom ini masih dapat diuraikan lagi.
Listrik Statis
Atom terdiri atas dua bagian, yaitu inti atom dan kulit atom. Inti atom bermuatan positif, sedangkan kulit atom terdiri atas partikel-partikel bermuatan negatif yang disebut elektron. Inti atom tersusun dari dua macam partikel, yaitu proton yang bermuatan positif dan netron yang tidak bermuatan(netral).
  • Suatu atom dikatakan netral apabila di dalam intinya terdapat muatan positif(proton) yang jumlahnya sama dengan muatan negatif (elektron) pada kulitnya.
  • Suatu atom dikatakan bermuatan positif apabila jumlah muatan positif(proton) pada inti lebih banyak daripada muatan negatif(elektron) pada kulit atom yang mengelilinginya.
  • Suatu atom dikatakan bermuatan negatif apabila jumlah muatan positif(proton) pada inti lebih sedikit daripada jumlah muatan negatif(elektron) pada kulit atom.
Atom yang paling sederhana adalah atom hidrogen yang hanya tersusun atas 1 proton dan 1 elektron. Karena jumlah proton dan elektronnya sama, maka atom hidrogen dikatakan sebagai atom netral. Atom helium terdiri atas 2 proton, 2 netron dan 2 elektron. Karena jumlah proton dan jumlah elektronnya sama, maka atom helium juga dikatakan sebagai atom netral.

Muatan Listrik
Setiap materi tersusun oleh partikel-partikel dan setiap partikel tersusun oleh atom-atom. Atom terdiri atas inti atom yang tersusun oleh proton dan neutron. Inti atom ini diselimuti oleh kulit atom. Pada kulit atom, terdapat elektron-elektron. Proton disebut juga muatan positif, sedangkan neutron merupakan muatan listrik netral. Adapun elektron adalah muatan listrik negatif.

Jika suatu materi mempunyai jumlah proton sama dengan jumlah elektron, materi tersebut dikatakan tidak bermuatan atau netral. Jika jumlah proton lebih banyak daripada jumlah elektron, sehingga atom-atomnya kekurangan elektron, maka atom tersebut dikatakan bermuatan positif. Adapun atom dikatakan bermuatan negatif jika jumlah elektron lebih banyak daripada jumlah proton, sehingga atom-atomnya kelebihan elektron.

a. Muatan Listrik Elementer
Suatu benda dikatakan bermuatan listrik jika atom-atom benda tersebut kekurangan atau kelebihan elektron. Besarnya muatan listrik bergantung pada seberapa banyak atom-atom tersebut kekurangan atau kelebihan elektron. Semakin banyak atom-atomnya kekurangan atau kelebihan elektron, maka semakin besar muatannya.

Dalam sistem satuan internasional (SI), satuan muatan adalah Coulomb (C). Muatan listrik sebuah elektron, proton, dan neutron adalah sebagai berikut.
Muatan elektron= –1,6 × 10-19 Coulomb
Muatan proton = +1,6 × 10-19 Coulomb
Muatan neutron = 0 (tidak bermuatan)

b, Interaksi Benda Bermuatan Listrik
  • Ketika penggaris plastik digosok dengan kain wool, maka elektron-elektron dari kain wool berpindah ke penggaris plastik, sehingga penggaris plastik tersebut bermuatan listrik negatif.
  • Ketika ebonit digosok dengan kain wool, maka elektron-elektron dari kain wool berpindah ke ebonit, sehingga ebonit tersebut bermuatan listrik negatif.
  • Ketika batang kaca digosok dengan kain sutera, elektron-elektron pada batang kaca tersebut berpindah ke kain sutera, sehingga batang kaca bermuatan positif
Hukum Coulomb
Pada tahun 1785, Charles Agustin Coulomb menemukan hukum dasar tentang gaya listrik antara dua partikel yang bermuatan. Dari hasil penelitiannya, Charles Coulomb menyimpulkan sebagai berikut.
Besarnya gaya tarik-menarik atau tolak-menolak antara dua benda yang bermuatan listrik sebanding dengan hasil kali kedua muatan tersebut dan berbanding terbalik dengan kuadrat jarak antara kedua muatan tersebut.
Misalkan muatan pertama dilambangkan dengan Q1' muatan kedua dilambangkan dengan Q2' dan jarak antara kedua muatan tersebut dilambangkan r. Besarnya gaya coulomb dapat dituliskan dalam persamaan sebagai berikut.
F = k .Q1 . Q2 .............(5.1)
r2
Keterangan :
F = Gaya tarik/tolak dua buah muatan (N)
k = Konstanta (9.109 N.m2/C2)
Q1' Q2' = muatan listrik (C)
r = jarak antara dua muatan (m)

Contoh
Diketahui dua buah muatan listrik masing-masing bermuatan +5 × 10-9 C dipisahkan oleh jarak 0,5 cm. Bagaimanakah in-teraksi kedua muatan tersebut? Hitunglah gaya Coulombnya!
Jawab:
Q1 = Q2 = +5 × 10–9 C
r = 0,5 cm = 0,5 × 10–2 m
F = .... ?
Karena kedua muatan tersebut sejenis, interaksi antara kedua muatan tersebut adalah tolak menolak. Besar gaya tolak menolaknya adalah 9 × 10–3 N.

Induksi Listrik
Induksi listrik adalah peristiwa pemisahan muatan pada suatu benda karena pada benda tersebut didekati benda lain yang bermuatan listrik.
Contoh :
  • Benda netral didekati benda bermuatan negatif, maka muatan-muatan negatif benda netral tertolak menjauh, sedangkan muatan-muatan positif mendekati benda yang menginduksi.
  • Benda netral didekati benda bermuatan positif, maka muatan-muatan positif benda netral tertolak menjauh, sedangkan muatan-muatan negatif mendekati benda yang menginduksi.
Elektroskop
Elektroskop adalah alat yang dapat digunakan untuk mengetahui ada tidaknya muatan listrik pada suatu benda. Elektroskop yang paling umum digunakan adalah elektroskop lembaran emas. Prinsip kerja elektroskop berdasarkan induksi listrik, yaitu jika sebuah benda bermuatan listrik disentuhkan kepala elektroskop maka muatan yang sejenis dengan
benda bermuatan listrik tadi akan ke daun elektroskop. Akibatnya kedua daun elektroskop akan bermuatan sejenis sehingga tolak menolak(daun elektroskop membuka).

Gambar a menunjukkan sebuah elektroskop bermuatan listrik negatif. Ketika didekati suatu benda bermuatan listrik, lembaran/daun pada elektroskop makin naik, berarti benda bermuatan yang didekatkan kepala elektroskop mempunyai muatan yang sejenis dengan muatan elektroskop, yaitu bermuatan negatif (Gambar 5. b). Sebaliknya pada Gambar 5.c ketika kepala elektroskop didekati benda bermuatan listrik, lembaran/daun elektroskop makin turun (lebih menguncup). Ini berarti benda bermuatan yang didekatkan pada kepala elektroskop mempunyai muatan yang tidak sejenis dengan muatan elektroskop. Muatan benda bermuatan yang didekatkan kepala elektroskop tersebut bermuatan positif.

Medan Listrik
Medan listrik adalah daerah di sekitar benda bermuatan listrik yang masih dipengaruhi oleh
gaya listrik. Medan listrik digambarkan dengan garis-garis gaya listrik.
Sifat-sifat garis gaya listrik
  • Garis gaya listrik berasal dari muatan positif menuju muatan negatif
  • Garis gaya listrik tidak pernah berpotongan
  • Semakin rapat garis gaya listrik, semakin kuat medan listriknya
Misalkan, sebuah muatan uji q diletakkan pada jarak tertentu dari muatan Q. Ternyata, muatan uji tersebut akan tertarik oleh muatan Q. Dalam hal ini muatan uji q berada di dalam medan listrik muatan Q. Kuat medan listrik didefinisikan sebagai berikut.
Besarnya gaya Coulomb yang dialami oleh sebuah muatan uji q akibat adanya muatan Q dibagi dengan besarnya muatan uji q.
Dalam bentuk matematis, definisi tersebut dituliskan dalam persamaan sebagai berikut.
kuat medan listrik = gaya Coulomb
muatan uji
Keterangan:
E = kuat medan (N/C)
Q = muatan (C)
r = jarak muatan uji ke muatan tertentu (m)

Contoh soal
Hitunglah kuat medan listrik dari sebuah muatan Q yang muatannya 7 × 10-9 C pada jarak 7 cm dari muatan tersebu t!
Jawab:
Q = +7 × 10-9 C
r = 7 cm = 7 × 10-2 m
E = .... ?
Jadi, kuat medan listriknya sebesar 1,29 × 104 N/C.

Rangkaian Listrik Seri dan Paralel

visibilityView Article
Rangkaian Listrik. Sebuah rangkaian listrik terdiri dari beberapa komponen. Komponen listrik adalah alat-alat yang digunakan untuk membuat sebuah peranti dan dapat berfungsi jika dialiri arus listrik. Saklar merupakan sebuah komponen listrik. Saklar digunakan untuk menyambungkan atau memutuskan arus listrik pada sebuah rangkaian listrik. Jika kamu menekan saklar pada posisi ON, berarti kamu telah membuat rangkaian menjadi tertutup dan arus listrik dapat mengalir dalam rangkaian sehingga lampu menyala. Saklar diperlukan untuk mematikan dan menghidupkan sebuah alat listrik.

a. Rangkaian Seri
Rangkaian seri adalah rangkaian listrik di mana semua hambatan listrik (atau peralatan listrik) disusun berderet, ujung hambatan satu bersambungan dengan ujung hambatan yang lainnya. Dalam rangkaian seri, besarnya hambatan total rangkaian merupakan jumlah dari keseluruhan hambatan peralatan listrik yang disambungkan dalam rangkaian.
Rangkaian Listrik Seri dan Paralel
b. Rangkaian Paralel
Selain rangkaian seri, sebuah rangkaian listrik dapat berupa rangkaian paralel. Pada rangkaian paralel, komponen-komponen listrik disusun secara paralel/sejajar dengan sumber arus listrik. Dalam rangkaian paralel, besarnya hambatan total dalam rangkaian lebih kecil dari hambatan setiap peralatan listrik yang disambungkan.

Rangkaian Listrik Tertutup

1. Hubungan Kuat Arus Listrik, Beda Potensial, dan Hambatan
George Simone Ohm (1789–1854) meneliti hubungan antara potensial listrik (V), kuat arus (I), dan hambatan listrik (R). Secara matematis dituliskan sebagai berikut.

Keterangan:
R = hambatan listrik (ohm)
V = beda potensial (volt)
I = kuat arus (ampere)

Rumus di atas dikenal sebagai Hukum Ohm, yaitu hambatan di dalam suatu rangkaian sama dengan tegangan dibagi arus.

Contoh Soal 1
Sebuah lampu disusun seri dengan sebuah amperemeter dan sumber tegangan sebesar 20 V. Jika jarum amperemeter menunjukkan angka 0,5 A, hitung besar hambatan lampu!
Jawab:
V = 20 V
I = 0,5 A
R = .... ?
Jadi, hambatan lampu tersebut adalah 40 ohm.

Contoh Soal 2
Diketahui sebuah sumber listrik sebesar 25 V. Jika sumber listrik itu dihubungkan dengan sebuah lampu yang hambatannya 5 ohm, hitunglah arus yang mengalir dalam lampu tersebut!
Jawab:
V = 25 V
R = 5 ohm
I = .... ?
Jadi, arus yang mengalir dalam lampu tersebut adalah 5 A.

2. Hukum Ohm dalam Keseharian
Dalam kehidupan sehari-hari, pengetahuan tentang Hukum Ohm sangat bermanfaat dalam pemilihan komponen-komponen listrik yang baik serta sesuai dengan besarnya tegangan yang tersedia. Biasanya alat-alat listrik dibuat sedemikian rupa sehingga besarnya tegangan yang diperlukan untuk mengoperasikan alat tersebut dapat menggunakan sumber tegangan dari sumber listrik dari PLN. Untuk menyesuaikan kebutuhan tegangan yang diperlukan guna mengoperasikan alat tersebut, biasanya alat-alat listrik dibuat dengan menambahkan hambatan. Baik dari segi bahan pembuatannya, atau ditambahkan resistor lain untuk menambah tahanan alat tersebut.

3. Hambatan Jenis
Arus listrik bergantung pada hambatan penghantarnya yaitu kabel dan komponen-komponen listrik yang terdapat dalam rangkaian tersebut. Hambatan listrik bergantung pada jenis bahan hambatan, panjang hambatan dan luas penampang yang dilalui arus listrik. Nilai hambatan suatu penghantar bergantung pada hal-hal berikut ini.
  • Panjang kawat, semakin panjang kawat maka hambatan semakin besar.
  • Luas penampang kawat, semakin besar luas penampang maka hambatannya semakin kecil.
  • Jenis bahan.
Jika dituliskan dalam bentuk matematika, hambatan dapat dituliskan sebagai berikut
Keterangan:
R = hambatan (Ω)
ρ = hambatan jenis (Ωm)
l = panjang bahan (m)
A = luas penampang (m2)

Contoh beberapa jenis penghambat dalam rangkaian listrik:
a. rheostat
b. resistor pita warna
c. potensiometer

Hambatan jenis merupakan sifat khas dari suatu bahan. Bahan yang terbuat dari besi akan berbeda hambatan jenisnya dengan bahan yang terbuat dari tembaga. Sebuah penghantar misalnya kabel harus memiliki hambatan jenis yang kecil sehingga arus dari sumber tegangan tidak banyak yang hilang ketika sampai pada alat listrik. Ukuran panjang dan luas penampang bahan juga memengaruhi hambatan sebuah bahan. Semakin panjang sebuah penghantar dan semakin kecil luas penampangnya, semakin besar hambatannya. Demikian sebaliknya.

Contoh
Sebuah kawat panjangnya 50 cm dan luas penampangnya 0,5 cm2. Hitunglah hambatan jenis kawat tersebut jika hambatannya 5.000 Ω !
Jawab:
l = 50 cm = 0,5 m
A = 0,5 cm2 = 0,5 × 10-4 m2
R = 5.000 Ω
ρ = .... ?
= 5.000 Ω x 0,5 × 10-4m2=0,5 Ωm
                       0,5 m

Konduktor, Isolator, dan Semikonduktor
Berdasarkan sifat menghantarkan listriknya, bahan dibedakan menjadi tiga kelompok, yaitu

konduktor, isolator, dan semikonduktor.
  • Konduktor adalah bahan-bahan yang dapat menghantarkan arus listrik dengan baik. Bahan-bahan yang termasuk jenis konduktor ini di antaranya besi, baja, tembaga, dan nikel.
  • Isolator adalah bahan-bahan yang sama sekali tidak dapat menghantarkan arus listrik. Contoh bahan-bahan yang termasuk isolator, di antaranya plastik, kayu kering, dan kertas.
  • Semikonduktor merupakan bahan yang bersifat di antara isolator dan konduktor. Artinya, semikonduktor dapat menghantarkan arus listrik dan dapat pula tidak menghantarkan arus listrik.
Sifat semikonduktor ini bergantung suhu. Jika suhu bahan semakin tinggi, bahan ini akan bersifat konduktor. Sebaliknya, jika suhunya semakin rendah bahan ini akan menjadi isolator. Sifat-sifat semikonduktor dimanfaatkan dalam pembuatan komponen-komponen listrik seperti transistor dan IC (Integrated Circuit). Bahan-bahan semikonduktor contohnya germanium, silikon, dan selenium.

Hukum I Kirchhoff
Gustav Kirchhoff pada pertengahan abad ke-19 telah melakukan penelitian tentang perilaku arus listrik yang melalui sebuah percabangan. Hasil penelitian Kirchhoff ini dikenal sebagai Hukum Kirchhoff.
Hukum I Kirchhoff menyatakan bahwa arus listrik yang masuk melalui percabangan sama dengan arus yang keluar dari percabangan.
Perhatikan gambar. Pada percabangan A, arus listrik I terbagi menjadi dua, yaitu yang
melalui kawat ab yakni I1, I2, I3 dan yang melalui kawat cd, yaitu I4. Setelah melalui percabangan, arus listrik ini berkumpul kembali dan keluar melalui titik B, sehingga arus yang memasuki percabangan akan sama dengan arus yang keluar dari percabangan.


Contoh Soal
Hitunglah besar kuat arus yang melalui I2 jika diketahui I1 = 20 A, I3 = 5 A, I4 = 5 A, dan I5 = 5 A!
Jawab:
Arus masuk = arus keluar
I1 = I2 + I3 + I4 + I5
20 A = I2 + 5 A + 5 A + 5 A
I2 = (20 – 5 – 5 – 5)
I2 = 5 A
Jadi, besarnya I2 adalah 5 A.

Rangkaian Hambatan Listrik (Resistor)
a. Rangkaian Seri Resistor
Rangkaian seri resistor adalah rangkaian yang terdiri atas sumber tegangan dan minimal dua resistor (hambatan listrik) yang disusun secara berderet. Kuat arus listrik yang mengalir pada setiap resistor adalah sama besar dan besar tegangan tergantung besar hambatan. Rangkaian seri dapat juga disebut sebagai rangkaian pembagi tegangan.
Pada gambar memperlihatkan empat buah resistor yang disusun secara seri. Telah disebutkan bahwa rangkaian seri resistor merupakan rangkaian pembagi tegangan. Dari rangkaian tersebut dapat diperoleh persamaan tegangan sebagai berikut.
E = Vae = Vab + Vbc + Vcd + Vde
Menurut hukum Ohm tegangan merupakan hasil kali kuat arus I dan hambatan R. Dengan demikian persamaan di atas dapat dituliskan sebagai berikut.
E = Vae = Iab · R1 + Ibc · R2 + Icd · R3 + Ide · R4
Karena di dalam rangkaian seri kuat arus yang melalui setiap resistor besarnya sama, persamaan di atas dapat dituliskan sebagai berikut.
E = Vae = I · R1 + I · R2 + I · R3 + I · R4
E = Vae = I · (R1 + R2 + R3 + R4)
E = Vae = I · Rs
Rs adalah hambatan pengganti dari rangkaian resistor yang dirangkai seri.
Rs = R1 + R2 + R3 + R4
Secara umum persamaan tahanan pengganti dari resistor yang disusun secara seri dituliskan sebagai berikut :
Rs = R1 + R2 + R3 + R4+....... Rn
Contoh 1
Jika diketahui dua buah resistor masing-masing 4 ohm. Dua resistor tersebut disusun secara seri, kemudian dihubungkan dengan sumber tegangan 6 volt. Hitunglah besarnya arus yang mengalir pada setiap resistor tersebut !

Jawab:
R1 = R2 = 4 ohm
Rs = R1 + R2 = 4 + 4 = 8 ohm
I = .... ?
I = V/R = 6 volt = 0,75 A
                8 ohm

Jadi,besarnya arus listrik yang mengalir pada setiap resistor adalah 0,75 A.

Contoh 2
Diketahui 3 buah resistor identik disusun secara seri dan dihubungkan dengan sumber tegangan 27 V. Jika diketahui kuat arus yang melewati resistor adalah 3 A, hitunglah besarnya hambatan setiap resistor!
Jawab:
V = 27 V
I = 3 A
R = .... ?
Dari hukum Ohm diperoleh:
I =V/R <---> R =V/I = 27 = 9Ω
                                      3
Karena ketiga resistor tersebut identik yang berarti besar hambatannya sama, diperoleh besarnya hambatan setiap resistor yaitu 9/3 = 3 ohm.

b. Rangkaian Paralel Resistor
Rangkaian paralel resistor adalah rangkaian yang terdiri atas resistor yang disusun paralel/sejajar satu sama lainnya. Jikapada rangkaian seri, arus yang melalui resistor akan sama dan tegangannya berbeda bergantung pada nilai hambatannya. Adapun pada rangkaian paralel resistor, arus yang melalui setiap hambatan akan berbeda dan tegangan setiap resistor akan sama. Gambar di bawah ini merupakan gambar sebuah rangkaian paralel resistor
Berdasarkan Hukum I Kirchhoff diperoleh:
Telah disebutkan bahwa tegangan pada setiap resistor pada rangkaian paralel adalah sama.
Sehingga diperoleh:
Dengan demikian hambatan pengganti paralel dirumuskan:
Contoh Soal 1
Lima buah resistor masing-masing memiliki tahanan 5 ohm disusun secara paralel. Rangkaian tersebut dihubungkan dengan tegangan 20 V. Hitunglah kuat arus yang melewati setiap tahanan!
Jawab:
R1 = R2 = R3 = R4 = R5 = 5 ohm
V = 20 V
I = .... ?
Menghitung tahanan pengganti rangkaian resistor paralel:
Sehingga Rp = 1 ohm
Menurut hukum Ohm:
I =V/R = 20 volt/1 ohm = 20 A.
Karena setiap resistor nilai tahanannya sama, arus yang melewatinya pun akan sama, yaitu:
I setiap resistor = I/banyaknya resistor = 20 A/5 = 4 a.
Jadi, besar arus yang mengalir pada setiap resistor adalah 4 A.

Kuat Arus Listrik

visibilityView Article
Perumpamaan arus listrik mirip dengan arus air yang melalui slang. Jika pada arus air, yang mengalir adalah air, sedangkan pada arus listrik yang mengalir adalah muatan listrik. Pada abad ke-19, para ilmuwan telah sepakat bahwa arus listrik merupakan aliran muatan positif pada suatu penghantar karena perbedaan potensial. Ternyata, setelah ditemukan elektron oleh J.J. Thompson, anggapan ini keliru.

Bukan muatan positif yang mengalir, melainkan muatan negatif atau elektron. Akan tetapi, anggapan bahwa arus listrik mengalir dari kutub yang bermuatan positif ke kutub yang bermuatan negatif masih digunakan. Hal ini dikarenakan kuantitas banyaknya elektron yang mengalir dalam satu arah sama dengan jumlah muatan negatif yang mengalir dalam arah berlawanan. Pengertian arus listrik merupakan aliran muatan positif dari potensial tinggi ke potensial rendah disebut arus konvensional.
kuat arus
Kuat Arus Listrik
Kuat arus listrik didefinisikan sebagai banyaknya muatan listrik yang mengalir setiap sekon. Kuat arus listrik dilambangkan dengan I dan satuannya adalah ampere (A). Satu ampere merupakan muatan 1 Coulomb yang mengalir setiap satu sekon. Jika definisi kuat arus ini dituliskan dalam bentuk matematika, diperoleh:

I = kuat arus listrik (A = ampere)
Q = muatan listrik (C = Coulomb)
t = waktu (s = sekon)

Satuan kuat arus lainnya adalah sebagai berikut.
a. miliampere (mA), 1 mA = 10-3 A
b. mikroampere (μA), 1 μA = 10-6 A

Contoh Soal 1
Muatan sebesar 180 coulomb mengalir dalam 30 detik. Hitunglah kuat arus listriknya!
Jawab:
Q = 180 C
t = 30 sekon

I = .... ?
Jadi, besarnya arus listrik adalah 6 Ampere.

Contoh Soal 2
Jika diketahui kuat arus sebuah sumber arus listrik adalah 5 A, hitunglah muatan yang mengalir selama 1 menit!
Jawab:
I = 5 A
t = 1 menit = 60 detik

Q = .... ?
= 5A x 60 s = 300 C
Jadi, banyaknya muatan yang mengalir adalah 300 C.

Mengukur Kuat Arus Listrik
Kuat arus listrik mempunyai satuan ampere. Satu ampere didefinisikan sebagai banyaknya muatan yang mengalir setiap satu sekon. Untuk mengukur kuat arus listrik digunakan sebuah alat yang dinamakan amperemeter. Penggunaan amperemeter ini dihubungkan dengan kedua kutub baterai yaitu kutub positif dan kutub negatif sedemikian sehingga arus listrik dari baterai melewati amperemeter. Ketika amperemeter dihubungkan dengan baterai, jarum amperemeter tersebut akan bergerak. Hal ini menandakan bahwa baterai tersebut masih dapat mengeluarkan arus listrik dan rangkaiannya benar.

Bagian-bagian dari amperemeter adalah sebagai berikut:
Dengan :
SU = Skala Ukur
BU = Batas Ukur
SM = Skala Maksimum
Jika melihat gambar di atas, maka kita peroleh, SU = 10, BU = 5 A, dan SM = 40. Maka hasil ukur pada pengukuran pada gambar di atas adalah:
Hasil Ukur = (10 x 5 A) / 40
= 1,25 A

Sumber Arus Listrik

visibilityView Article
Sumber arus listrik adalah benda-benda yang dapat menghasilkan arus listrik, contohnya baterai, akumulator, elemen Volta, elemen Daniell, dan elemen Weston. Mobil-mobilan dapat bergerak karena memperoleh energi listrik dari baterai, lampu senter dapat digunakan setelah dipasang baterai ke dalamnya.

1. Gaya Gerak Listrik
Semua sumber arus listrik memiliki kemampuan memberikan gaya pada elektron sehingga elektron dari sebuah atom materi dapat bergerak. Gaya dari sumber baterai yang demikian disebut sebagai gaya gerak listrik (ggl). Gaya gerak listrik sering juga disebut tegangan. Satuan gaya gerak listrik adalah volt (V). Ggl diberi lambang E. Misal pada kulit luar baterai tercantum label 1,5 V, ini menunjukkan besarnya ggl yang dibangkitkan oleh baterai tersebut. Jadi, ggl merupakan beda potensial antara kutub-kutub sebuah sumber listrik (baterai) saat sumber tidak mengalirkan listrik (saklar terbuka).

2. Elemen Primer
Elemen primer merupakan sebuah sumber arus listrik. Elemen primer merupakan sumber arus listrik yang bersifat sekali pakai. Artinya jika sumber arus tersebut sudah habis energinya, kamu tidak dapat mengisi elemen primer. Kamu harus mengganti sumber arus listrik tersebut dengan sumber arus yang baru.

a. Baterai
Baterai memiliki dua kutub yaitu kutub positif dan kutub negatif. Kutub positif baterai
berupa batang karbon yang dibenamkan ke dalam campuran mangan dioksida (MnO2) dan amonium klorida (NH4Cl). Kutub negatif baterai adalah lapisan paling luar yang terbuat dari seng (Zn). Campuran mangan dioksida berfungsi sebagai zat pelindung elektrolit. Di antara lapisan paling luar yaitu seng berfungsi sebagai kutub negatif dan campuran mangan dioksida terdapat pasta amonium klorida yang berfungsi sebagai elektrolit. Di antara kutub positif dan kutub negatif ini terdapat beda potensial. Beda potensial inilah yang menyebabkan baterai tersebut dapat mengalirkan arus listrik jika dipasangkan secara benar dalam sebuah rangkaian. Suatu saat, karbon dan elektrolit dari baterai akan habis sehingga baterai tersebut tidak dapat menghasilkan arus listrik.

Penyempurnaan dari sel seng karbon adalah baterai alkalin. Ukuran, bentuk, dan tegangannya mirip dengan sel seng karbon, tetapi jika digunakan dalam suatu peralatan, sel alkalin dapat bertahan enam atau tujuh kali lebih lama dibanding sel seng karbon biasa. Dalam sel alkalin mengandung elektrolit larutan kalium hidroksida. Pelat logamnya terbuat dari nikel dan senyawa kadmium.

b. Elemen Volta
Elemen volta ini kali pertama ditemukan oleh Alessandro Volta (1745 – 1827) seorang ahli Fisika berkebangsaan Italia. Elemen volta adalah sel elektrokimia yang dapat menghasilkan arus listrik. Elemen volta terdiri atas tabung kaca yang berisi larutan asam sulfat (H2SO4) dan sebagai anoda adalah logam Cu (tembaga) sedangkan kutub negatif adalah Zn (seng). Jika elektroda-elektroda seng dan tembaga dimasukkan ke dalam larutan asam sulfat, akan terjadi reaksi kimia yang menyebabkan lempeng tembaga bermuatan listrik positif dan lempeng seng bermuatan listrik negatif. Hal ini menunjukkan bahwa lempeng tembaga memiliki potensial lebih tinggi daripada potensial lempeng seng. Elektron akan mengalir dari lempeng seng menuju lempeng tembaga. Jika kedua lempeng ini dirangkaikan dengan lampu, arus akan mengalir dari lempeng tembaga ke lempeng seng sehingga lampu akan menyala.
Aliran arus listrik ini tidak berlangsung lama sehingga lampu akan padam. Hal ini dikarenakan gelembung-gelembung gas hidrogen yang dihasilkan oleh asam sulfat (H2SO4) akan menempel pada lempeng tembaga. Gelembung gas hidrogen ini akan menghambat aliran elektron. Kamu telah mengetahui bahwa arus listrik adalah aliran elektron-elektron sehingga jika aliran elektron ini terhambat, tidak akan ada arus yang mengalir. Peristiwa ini disebut polarisasi. Dengan kata lain, polarisasi adalah peristiwa tertutupnya elektroda elemen oleh hasil reaksi yang mengendap pada elektroda tersebut.

c. Elemen Daniell
Cara kerja elemen daniell pada dasarnya sama dengan cara kerja elemen volta. Namun pada elemen daniell ditambahkan larutan tembaga sulfat (CuSO4) untuk mencegah terjadi polarisasi, yang dinamakan depolarisator sehingga usia elemen dapat lebih lama.

3. Elemen Sekunder
Elemen sekunder merupakan elemen elektrokimia yang dapat diperbaharui bahan-bahan pereaksinya. Elemen sekunder ini harus diberi muatan terlebih dahulu sebelum digunakan, yaitu dengan cara melewatkan arus listrik melaluinya. Contoh elemen sekunder adalah akumulator. Akumulator banyak digunakan dalam kendaraan bermotor seperti sepeda motor dan mobil.
Akumulator disebut juga elemen basah. Akumulator terdiri atas pasangan-pasangan keping timbal dan timbal dioksida. Pasangan ini disebut sel. Setiap pasangan timbal dan timbal dioksida ini mampu memberikan tegangan 2 volt. Kapasitas penyimpanan sebuah aki dapat terlihat berupa tulisan angka pada aki. Contoh, pada aki tertulis 12V 40 AH, artinya aki mempunyai ggl 12 volt dan mengalirkan arus listrik 40 ampere selama 1 jam.

Sama seperti pada baterai, akumulator juga mempunyai dua buah kutub, yaitu kutub positif dan kutub negatif. Kutub negatif. terletak pada timbal dan kutub positif pada timbal dioksida. Timbal dan timbal dioksida dicelupkan ke dalam larutan elektrolit asam sulfat. Keuntungan pemakaian elemen sekunder misalnya akumulator yaitu dapat diperbaharui. Agar akumulator dapat berfungsi kembali, perlu dimuati oleh sumber arus searah (DC).

Perubahan energi saat aki digunakan yaitu dari energi kimia menjadi energi listrik. Sedangkan saat pengisian aki terjadi perubahan energi dari energi listrik menjadi energi kimia. Cara pengisian aki adalah sebagai berikut.
  • Hubungkan dengan sumber tegangan arus DC yang beda potensialnya lebih tinggi dari aki tersebut.
  • Arus yang mengalir kecil sehingga perlu waktu lebih lama. Hal ini bertujuan agar tidak merusakkan sel aki.
  • Ukur konsentrasi larutan dengan hidrometer.
  • Perhatikan ukuran kapasitas akinya dengan amperejam.

Tegangan Listrik
Tegangan listrik adalah beda potensial antara dua buah kutub sumber tegangan. Alat untuk
mengukur tegangan disebut voltmeter. Selain tegangan antara kutub-kutub sumber tegangan, setiap alat listrik dalam sebuah rangkaian tertutup akan mempunyai tegangan yang dapat diukur dengan voltmeter. Tegangan ini disebut tegangan jepit. Jadi tegangan jepit merupakan beda potensial antara kutub-kutub sebuah sumber arus listrik ketika sumber mengalirkan arus listrik. Misalkan sebuah sumber 12 V digunakan untuk menyalakan sebuah lampu, ukurlah potensial listrik lampu tersebut dengan cara memasangkan voltmeter secara paralel dengan lampu. Tegangan yang terbaca pada voltmeter ini merupakan tegangan jepit atau tegangan terpakai oleh alat. Nilai tegangan jepit tergantung pada nilai hambatan bebannya. Makin besar nilai hambatan bahan makin kecil nilai tegangan jepitnya.